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ABSTRACT 

HAL/S is a l a r g e  genera l  purpose real-time programming language some- 

what similar t o  ADA. Its major app l i ca t ions  are f o r  embedded real-time 

systems, i n  p a r t i c u l a r  f o r  t he  Space S h u t t l e  on-board computer sof tware  and 

similar a p p l i c a t i o n s  wi th in  NASA. Af te r  t h e  language had been i n  resular 

use f o r  s e v e r a l  years ,  we were requested by NASA t o  prepare a formal seman- 

t i c  d e f i n i t i o n  of t h e  language us ing  t h e  method of H-graph semantics.  This  

paper r e p o r t s  on t h e  method and s t r u c t u r e  of t h a t  d e f i n i t i o n  and on exper i -  

ence wi th  i t s  use i n  f ind ing  and co r rec t ing  e r r o r s  i n  t h e  language s p e c i f i -  

c a t i o n  and i n  the  des ign  of implementations f o r  t h e  language. 
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1. HAL/s 

HAL/S 111 is  a p recu r so r  t o  ADA. It w a s  designed and implemented i n  

t h e  e a r l y  1970's by I n t e r m e t r i c s ,  a company t h a t  a l s o  prepared one of t h e  

two f i n a l  ADA designs.  HAL/S is intended f o r  a similar set of a p p l i c a t i o n s  

(embedded real-time software)  and is  a language of about t h e  same s i z e  as 

ADA, i n  terms of number of f e a t u r e s .  The NASA Space S h u t t l e  p r o j e c t  i s  t h e  

primary user of t he  language, b u t  i t  is a l s o  used f o r  several o t h e r  pro- 

jects within NASA. HALIS w a s  developed i n  t h e  e a r l y  1970's and r e p r e s e n t s  

a good state-of-the-art  design from t h a t  period. Because it is not as 

widely known as ADA or  PASCAL, some of i t s  key f e a t u r e s  are l i s t e d  below. 

The language includes:  

a. A complete set of f e a t u r e s  f o r  real-time c o n t r o l  of concurrent  

t a s k s ,  including t a s k  d e f i n i t i o n ,  schedul ing using p r i o r i t i e s ,  c lock t i m e s ,  

o r  even t s ,  t a s k  c a n c e l l a t i o n  based on clock t i m e s  o r  even t s ,  c r i t i ca l  sec- 

t i o n s  with lockout from shared d a t a ,  and w a i t  and s i g n a l  ope ra t ions ;  

b. Exception handl ing mechanisms, i nc lud ing  program d e f i n i t i o n  of ex- 

cep t ion  handlers  and r a i s i n g  of except  i o n s  ; 

C. A l a r g e  complement of b u i l t - i n  d a t a  types (but no type d e f i n i t i o n  

mechanisms), i nc lud ing  real, i n t e g e r ,  v e c t o r ,  matr ix ,  a r r a y ,  record,  poin- 

ter ,  b i t  s t r i n g ,  c h a r a c t e r  s t r i n g ,  and event ;  

d. Extremely gene ra l  s u b s c r i p t i n g  of a r r a y s ,  i nc lud ing  s e l e c t i o n  of 

a r b i t r a r y  s l ices ,  subarrays and a r b i t r a r y  sets of components through use of 

arrayed" subs c r  i p  t s ; 11 

e. P r i m i t i v e  ope ra t ions  and expres s ions  def ined f o r  a r r a y  operands, 

i nc lud ing  some reshaping and type conversions;  

f "Reentrant" procedures (shared concur ren t ly  by m u l t i p l e  t a s k s )  and 

exclusive" procedures ( exc lus ive  access  by one t a s k  a t  a t i m e ) ;  no recur-  11 

s i o n ;  
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g. Many miscellaneous f ea tu res :  macros, i n - l i ne  func t ions ,  input-  

loops,  c o n t r o l  of s t o r a g e  output  ( p r i m i t i v e ) ,  temporary v a r i a b l e s  i n  

r e p r e s e n t a t i o n s  and s t o r a g e  a l l o c a t i o n ,  etc.  

HAL/S implementations e x i s t  tha t  are 

d i f f e r e n t  mainframes (IBM 360/370,  DG ECLIPSE 

hosted on a t  least t h r e e  

and MODCOMP) and t h a t  com- 

p i l e  code f o r  a t  least t e n  d i f f e r e n t  t a r g e t  machines. The major implemen- 

t a t i o n  on the  360/370 i s  b u i l t  using a modified XPL compiler-generator t o  

produce an  in t e rmed ia t e  code c a l l e d  HALMAT. HALMAT is optimized i n  a 

s e p a r a t e  machine-independent pass and then f e d  t o  code gene ra to r s  f o r  par- 

t i c u l a r  t a r g e t  machines. HAL/S a l s o  provides a support  environment of simu- 

l a t i o n  and a n a l y s i s  t o o l s .  Thus W / S  provides,  i n  a somewhat more primi- 

t i v e  form, much of what ADA w i i i  provide. It i s  one of the major high- 

l e v e l  languages f o r  embedded computer a p p l i c a t i o n s  t h a t  is i n  production 

use  a t  present .  More important ly  for  t h i s  paper, i t  r e p r e s e n t s  a language 

t h a t  had been i n  use f o r  l a r g e  s c a l e ,  p o t e n t i a l l y  l i f e - c r i t i c a l  real-time 

a p p l i c a t i o n s  f o r  s e v e r a l  yea r s  p r i o r  t o  t h e  s tar t  of t h i s  p r o j e c t .  It a l s o  

i s  a language developed p r imar i ly  in  an i n d u s t r i a l  environment which has 

not  r ece ived  extended academic study o r  a n a l y s i s  during i t s  formative 

years, i n  c o n t r a s t  t o  ADA. 

- 

2. H-graph Semantics 

The formal semantic d e f i n i t i o n  of HAL/S uses a d e f i n i t i o n a l  method 

c a l l e d  H-graph semantics [ 2 , 3 ] .  The approach is  an  o p e r a t i o n a l  one: a f o r -  

m a l  model i s  def ined t h a t  r ep resen t s  an a b s t r a c t  implementation of t h e  lan- 

guage. The d e f i n i t i o n  has two pa r t s ,  d e f i n i n g  t h e  t r a n s l a t i o n  and execu- 

t i o n  of programs 
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Execution is modelled i n  terms of an a b s t r a c t  H-graph machine, using 

no t ions  of s t a t e  and s t a t e  t r a n s i t i o n .  S t a t e s  are represented  as H-graphs, 

which are h i e r a r c h i e s  of d i r e c t e d  graphs t h a t  r ep resen t  t h e  var ious  d a t a  

and code s t r u c t u r e s  present  during execut ion  of a program. The class of 

poss ib l e  s t a t e  s t r u c t u r e s  is  def ined by an H-graph grammar, which is a fo r -  

m a l  grammar i n  which product ions de f ine  the  va r ious  types  of da t a  and code 

s t r u c t u r e s  (H-graphs) t h a t  are used i n  the  model. S ta te  t r a n s i t i o n s  are 

def ined  by a set of H-graph t ransforms,  each of which de f ines  a poss ib l e  

l o c a l  t ransformation i n  a s ta te  H-graph during execut ion ,  and by a t r a n s i -  

t i o n  func t ion ,  which de f ines  the next t ransform t o  apply a t  any s ta te  t o  

e f f e c t  the  next s t a t e  t r a n s i t i o n .  The t ransforms thus  represent  t h e  p r i m i -  

t i v e  operat ions of t h e  a b s t r a c t  machine, and t h e  t r a n s i t i o n  func t ion  repre-  

s e n t s  the  i n t e r p r e t a t i o n  cyc le  of the  machine. 

Trans la t ion  i s  modeled a l s o  a s  an H-graph machine, u s u a l l y  wi th  two 

b a s i c  t r a n s i t i o n s  corresponding t o  ( 1 )  pars ing  and t r a n s l a t i o n  i n t o  i n t e r -  

mediate code us ing  a contex t  f r e e  t r a n s l a t i o n  s p e c i f i c a t i o n ,  and ( 2 )  s t a t i c  

type  checking, r e s o l u t i o n  of overloading,  and o t h e r  "semantic ac t ions"  t h a t  

produce the c o r r e c t  i n i t i a l  s tate f o r  t he  run-time a b s t r a c t  machine. The 

f i r s t  s t e p  is convenient ly  represented  by a p a i r  grammar which de f ines  the 

t r a n s l a t i o n  by pa i r ing  product ions i n  the  BNF grammar de f in ing  t h e  syntax  

wi th  productions i n  the  H-graph grammar de f in ing  t h e  in t e rmed ia t e  code. 

These semantic d e f i n i t i o n  methods are well-developed and descr ibed  

elsewhere [ 2 , 3 ] .  For th i s  paper  the t e c h n i c a l  d e t a i l s  are not  needed t o  

understand the  r e s u l t s .  H-graph semantics i s  s u b s t a n t i a l l y  d i f f e r e n t  from 

o t h e r  semantic d e f i n i t i o n  methods such as d e n o t a t i o n a l  semantics [ 4 ] ,  

axiomat ic  semantics [5], o r  t h e  Vienna D e f i n i t i o n  Language 161. The most 

important  d i f fe rence  f o r  t h i s  paper l i e s  i n  t h e  emphasis i n  H-graph seman- 
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t i c s  on a d e f i n i t i o n  t h a t  i s  a l s o  an a b s t r a c t  implementation model f o r  t h e  

language. 

3 .  The HAL/S Semantic D e f i n i t i o n  

The complete formal semantic d e f i n i t i o n  i s  found i n  [7]. The d e f i n i -  

t i o n  inc ludes  a l l  parts of t he  language wi th  t h e  except ion of c e r t a i n  low- 

l e v e l  o r  s t r o n g l y  implementation dependent f e a t u r e s .  I n  p a r t i c u l a r ,  t h e  

d e f i n i t i o n  inc ludes  a l l  of t he  real-t ime f e a t u r e s ,  except ion handl ing,  

t a s k s ,  programs, procedures and func t ions ,  d a t a  s t r u c t u r e s ,  and o t h e r  high- 

l e v e l  p a r t s  of t he  language. A complete run-time model f o r  t he  language i s  

given. The t r a n s l a t i o n  d e f i n i t i o n  inciudes only the t r a n s l a t i o n  i n t o  the  

i n i t i a l  s ta te  of t h e  run-time machine (us ing  a p a i r  grammar t o  map each 

s y n t a c t i c  c o n s t r u c t  i n t o  code and/or d a t a  f o r  t h e  run-time machine). No 

at tempt  is made t o  formally model the s t a t i c  type-checking and o t h e r  seman- 

t i c  a n a l y s i s  parts of t h e  compiler. 

The d e f i n i t i o n  inc ludes :  

176 pair grammar productions,  each of which d e f i n e s  the  mapping of 

one s y n t a c t i c  c o n s t r u c t  i n t o  an i n i t i a l  codeldata  s t r u c t u r e  f o r  t he  run- 

t i m e  machine; 

73 productions t h a t  de f ine  d a t a  s t r u c t u r e s  used i n  t h e  run-time 

machine, where the  d a t a  s t r u c t u r e  is e i t h e r  a "system d a t a  s t r u c t u r e "  (such 

as  a queue used i n  t h e  real-time process schedul ing)  t h a t  is part of t he  

run-time support  s t r u c t u r e ,  o r  a data  s t r u c t u r e  t h a t  changes during execu- 

t i o n  from i ts  i n i t i a l  form as given i n  t h e  pair grammar production. I f  a 

code o r  d a t a  s t r u c t u r e  is i n v a r i a n t  during execut ion (as most code s t r u c -  

t u r e s  are) t h e  production is given only once i n  the  pair grammar; 
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139 transform definitions, each defining a possible primitive ac- 

tion (or set of actions) during program execution; and 

the transition function. 

In preparing the definition, we worked almost entirely from the lan- 

guage specification [l], rather than from the implementation model provided 

by some existing implementation of the language. In the cases where the 

speicification was vague, ambiguous, or inconsistent, we often ran one or 

more test programs on the 360/370 implementation to see what semantics was 

used by the implementation. However, we made no significant use of avail- 

able documentation on existing HAL/S compiler structures. 

Comparison of the HAL/S formal semantic definition with the ADA defi- 

nition [81 using denotational semantics brings out as major differences: 

a. The modeling of the semantics of real-time features for HAL/S; 

this part of ADA is not treated in [8]; 

b. The modeling of the static checking parts of compilation in the 

ADA definition; this part of HAL/S semantics is not treated in [7], 

although we have modeled these parts of compilation in other language defi- 

nitions; 

C. The emphasis on realistic implementation models in the HAL/S defi- 

nition; the denotational definition of ADA is not intended to be used di- 

rectly as an implementation guide; 

d. The general style of the definitions of run-time semantics: the 

ADA definition uses recursive functions, continuations, fixed points, and 

the usual formal apparatus of denotational semantics; control and state 

structure descriptions are decentralized. The HAL/S definition uses ab- 

stract Ifstate machine" concepts, with control centralized in the transition 

function and the state description centralized in the H-graph grammar pro- 

ductions defining the state structure. 
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4. Experience with Use of t he  HAL/S D e f i n i t i o n  

Even though HAL/S had been i n  in t ens ive  use f o r  s e v e r a l  years  p r i o r  t o  

t h i s  p r o j e c t ,  t h e  production of t h e  formal  semantic  d e f i n i t i o n  l e d  t o  

c l a r i f i c a t i o n  and c o r r e c t i o n  of severa l  dozen s u b t l e  problems i n  the  lan- 

guage s p e c i f i c a t i o n  and i t s  implementation. I n  a d d i t i o n  the  d e f i n i t i o n  

proved t o  be a u s e f u l  b a s i s  f o r  a d e t a i l e d  des ign  of a HAL/S implementa- 

t i o n .  We d i scuss  each of t hese  experiences s e p a r a t e l y .  

C l a r i f i c a t i o n  of Language - Def in i t i on  ___ 

C l a r i f i c a t i o n  of a language d e f i n i t i o n  i s  one of t h e  primary uses  f o r  

any semantic d e f i n i t i o n .  Despi te  t h e  implementation and use of t he  lan-  

guage, we assembied a i ist  of over 50 s i g n i f i c a n t  errors, ambigui t ies ,  and 

i n c o n s i s t e n c i e s  i n  t h e  language s p e c i f i c a t i o n  dur ing  t h i s  p ro jec t  [9]. 

These problem areas were discovered i n  t h e  course  of t r y i n g  t o  f i n d  a con- 

s i s t e n t  implementation model f o r  the language, t h a t  is, an implementation 

model f o r  t h e  run-time s t r u c t u r e  tha t  would make a complete, c o n s i s t e n t  

whole ou t  of t h e  d ive r se  set of f ea tu res  i n  111 Examples inc lude  almost  

every a spec t  of t h e  language, including,  i n  p a r t i c u l a r ,  t a sk ing ,  excep- 

t i o n s ,  and ar rayed  subsc r ip t s .  

The l i s t  of problem areas was of s e r i o u s  concern t o  NASA, because 

s e v e r a l  hundred thousand l i n e s  of HAL/S code f o r  Space S h u t t l e  had a l r e a d y  

been coded and t e s t e d .  Af t e r  checking each problem area, it was determined 

t h a t  few involved language s t r u c t u r e s  t h a t  had been used i n  Space S h u t t l e  

code, because of dec i s ions  e a r l y  i n  tha t  p ro j ec t  t o  avoid p a r t s  of t he  lan- 

guage t h a t  were "suspect" such as arrayed s u b s c r i p t s  and except ion  hand- 

l i n g .  However, s i x  changes t o  the language were made d i r e c t l y  as a r e s u l t  

of t h i s  problems l i s t  [ l o ] ,  and t h e  "array subsc r ip t "  f e a t u r e  was complete- 
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l y  de le ted .  Also a number of s e c t i o n s  of t h e  s p e c i f i c a t i o n  were c l a r i f i e d  

t o  remove ambigui t ies  and i n c o n s i s t e n c i e s  (over  30 modif ica t ions  t o  t h e  

language s p e c i f i c a t i o n  were made). 

Obviously t h e  implementors of HAL/S had come up a g a i n s t  t hese  same 

problems areas  i n  the  d e f i n i t i o n ,  but as o f t e n  happens, an  a r b i t r a r y  imple- 

mentat ion choice was made and t h e  s p e c i f i c a t i o n  w a s  not  co r r r ec t ed  o r  

c l a r i f i e d .  Thus, a l though it  might be expected t h a t  an implementation e f -  

f o r t  would f i n d  and b r ing  t o  a t t e n t i o n  t h e  same set of problems, t h i s  w a s  

no t  t he  case. 

Detec t ion  of Compiler E r ro r s  

R e s i d u a l  bugs i n  compilers and run-time support  rou t ines  are a s e r i o u s  

problem where l i f e  c r i t i c a l  sof tware  is w r i t t e n  i n  high-level  languages.  

No v e r i f i c a t i o n  o r  a n a l y s i s  of a source program is of much value i f  t h e  

compiler does not  c o r r e c t l y  implement the  language s p e c i f i e d .  Our goa l  i n  

t h e  HAL/S d e f i n i t i o n  was not t o  f i n d  e r r o r s  i n  e x i s t i n g  compilers ,  but t he  

l i s t  of problem areas descr ibed  above i d e n t i f i e d  language f e a t u r e s  t h a t  

might have caused t roub le  f o r  implementors. Where t h e  language spec i f  ica- 

t i o n  is incomplete, ambigious, o r  con t r ad ic to ry ,  t h e  language implementa- 

t i o n  necessa r i ly  does something. What is  implemented i n  these  cases i s  not 

necessa r i ly  an  e r r o r  u n t i l  t h e  s p e c i f i c a t i o n  is  t i gh tened  t o  e l i m i n a t e  t h e  

problem, but  a t  t h a t  t i m e  i f  t he  s p e c i f i c a t i o n  and implementation d i f f e r ,  

then  each problem becomes a compiler e r r o r .  Our l i s t  of HAL/S problem 

a r e a s  w a s  u sed  by o the r s  t o  f i n d  s e v e r a l  s u b t l e  bugs i n  HAL/S implementa- 

t i o n s ,  and w e  i nadve r t en t ly  discovered one wi th  one of our  tes t  programs as 

w e l l .  
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Three kinds of e r r o r s  w e r e  found: 

1. Implementation more r e s t r i c t e d  than t h e  s p e c i f i c a t i o n .  The imple- 

mentation d id  not a l low a c o n s t r u c t  t h a t  t h e  s p e c i f i c a t i o n  s t a t e d  t o  be le- 

, g a l .  

2. Implementation d i f f e r e n t  from t h e  s p e c i f i c a t i o n .  An e r r o r  caused 

by i n c o r r e c t l y  i n t e r p r e t i n g  part of the language s p e c i f i c a t i o n .  

3 .  Implementation matches the  s p e c i f i c a t i o n ,  but both are i n c o r r e c t .  

The most s e r i o u s  e r r o r s  were those i n  which t h e  s p e c i f i c a t i o n  was t o o  

i t  had no reasonable  meaning) and where the  implementation allowed t h e  

c o n s t r u c t  as w e l l ,  simply producing "bad code" i n  response t o  use of t h e  

c o n s t r u c t .  Execution of t he  bad code could p o t e n t i a l l y  compromise t h e  

i n t e g r i t y  of t he  e n t i r e  run-time s t r u c t u r e  (which i s  not t h e  case i n  (1) o r  

(2)) .  

Examples. 

The major problems found i n  the language s p e c i f i c a t i o n  are d e t a i l e d  

below. In each case, the language f e a t u r e  i s  b r i e f l y  descr ibed,  then t h e  

problem with the  s p e c i f i c a t i o n  and/or implementation of t h e  f e a t u r e ,  and 

f i n a l l y  the  d i s p o s i t i o n  of t h e  problem i s  given ( t o  the  e x t e n t  known). The 

o p t i o n s  f o r  d i s p o s i t i o n  of problems where implementation and s p e c i f i c a t i o n  

d i f f e r  were somewhat unique t o  t h e  s p e c i a l  circumstances of HAL/S, i n  which 

t h e  same group w a s  both t h e  designer and almost t h e  s o l e  implementor. A 

c o r r e c t i o n  could be made e i t h e r  by changing t h e  s p e c i f i c a t i o n  t o  match t h e  

implementation, o r  v i c e  ve r sa ,  o r  possibly by changing both. For a s t an -  

dard language such as Ada o r  Fortran, t he  op t ion  of changing the  s p e c i f i -  

c a t i o n  i n s t e a d  of t he  implementation is u s u a l l y  not open. 
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Problem 1: Arrayed s u b s c r i p t s .  HAL provides an extremely gene ra l  

subsc r ip t ing  f e a t u r e  f o r  a r r a y s  (and o t h e r  d a t a  s t r u c t u r e s  such as v e c t o r s ,  

matrices, cha rac t e r  s t r i n g s  and b i t  s t r i n g s ,  a l l  of which are s e p a r a t e  

t y p e s  i n  HAL). A subsc r ip t  may be: 

a .  A simple index ( a s  i n  most languages) ,  

b. A s l i ce  a long  a s i n g l e  dimension, s p e c i f i e d  by "*" ( a l l  e lements ) ,  

I AT J (I elements s t a r t i n g  a t  element J ) ,  o r  J TO K (elements J through 

K) , 
C. An "arrayed subscr ip t" ,  e.g., AB where B is an i n t e g e r  a r r a y  of 

s u b s c r i p t s ,  spec i fy ing  s e l e c t i o n  of a subar ray  of A, where B g ives  t h e  sub- 

s c r i p t s  of the  s e l e c t e d  elements and t h e i r  pos i t i on  i n  t h e  r e s u l t  a r r ay .  

The problem. The semantics of many a s p e c t s  of a r rayed  s u b s c r i p t s  are 

l e f t  undefined by the  language s p e c i f i c a t i o n .  The major problems are: 

a. Assignment t o  a v a r i a b l e  wi th  an  a r r ayed  s u b s c r i p t  is not  c l e a r l y  

def ined  i f  t h e  s u b s c r i p t  conta ins  a repea ted  value.  For example, t h e  mean- 

ing  of MI * = MI,*+l  when I = [2 ,1 ,1]  ( an  example from [ l ] ) .  
9 

b. No r u l e s  are given f o r  determining t h e  shape of t he  r e s u l t i n g  a r r a y  

when a combination of a r rayed  s u b s c r i p t s  and s l i c e s  i s  s p e c i f i e d .  

C. No r u l e s  are given f o r  determining t h e  da t a  type of t he  r e s u l t  when 

an arrayed s u b s c r i p t  is appl ied  t o  a matrix, v e c t o r ,  o r  s t r i n g .  For exam- 

p l e ,  if A is a c h a r a c t e r  s t r i n g  and I is  a one-dimensional a r r a y  of sub- 

s c r i p t s ,  is AI a c h a r a c t e r  s t r i n g  o r  an  a r r a y  of one c h a r a c t e r  c h a r a c t e r  

s t r i n g s .  

Dispos i t ion  of t h e  problem. The implementors analyzed poss ib le  solu-  

t i o n s  t o  these problems as fol lows [14]:  

"It would be extremely d i f f i c u l t  t o  c l e a r l y  spec i fy  how a r rayness  

i n  subsc r ip t s  i s  present ly  implemented. To have t h e  Language S p e c i f i c a t i o n  
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and compiler match would t h e r e f o r e  involve changes t o  both. Arrayed sub- 

s c r i p t s  are very seldom used...." The arrayed s u b s c r i p t  f e a t u r e  w a s  en- 

t i r e l y  d e l e t e d  from t h e  language. 

Problem 2: V i s i b i l i t y  of TEMPORARY v a r i a b l e s .  The gene ra l  looping 

c o n s t r u c t  i n  HAT., i s  t h e  DO...END group. In a DO group header i t  is  possi-  

b l e  t o  d e c l a r e  v a r i a b l e s  as TEMPORARY. The l i f e t i m e  of such a v a r i a b l e  

then i s  r e s t r i c t e d  t o  the  execut ion of t h e  DO group r a t h e r  than t o  t h a t  of 

t h e  l a r g e r  program u n i t  containing the DO group. 

The problem. A TEMPORARY v a r i a b l e  may become v i s i b l e  through non loca l  

r e f e r e n c e s  be fo re  a DO group i s  en te red  o r  a f t e r  i t s  execut ion i s  

cnmplete, This may happen hecaUSe a task, prOcP-dnres or f u n c t i n n  may he 

dec la red  w i t h i n  a DO group and may then access non loca l ly  any TEMPORARY 

v a r i a b l e  def ined i n  t h e  DO group. Such a subprogram may be c a l l e d  from 

o u t s i d e  t h e  DO group, and such a t a s k  may be i n i t i a t e d  without  t he  DO group 

being en te red .  In checking what was  allowed by the  360 implementation, we  

found t h a t  t h e  compiler allowed the c o n s t r u c t s ,  but  t h e  value of t h e  

TEMPORARY v a r i a b l e  w a s  garbage r ega rd le s s  of whether t h e  DO group had been 

executed previously.  

D i spos i t i on  of t he  problem. The implementors i d e n t i f i e d  t h i s  problem 

as the  only one i n  which t h e  compiler produced "bad code" t h a t  might a f f e c t  

e x i s t i n g  Space S h u t t l e  programs. Declarat ion of a t a s k  wi th in  a DO group 

w a s  p roh ib i t ed .  Calls t o  procedures and func t ions  dec la red  w i t h i n  a DO 

group w e r e  allowed only from within t h e  same DO group. Thus TEMPORARY 

v a r i a b l e s  were made v i s i b l e  only during execut ion of t he  DO group in which 

they  were defined. 
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Problem 3: Mutual exc lus ion  from shared da ta .  In  HAL, v a r i a b l e s  

shared among t a s k s  are organized i n t o  "lockgroups" numbered 1 t o  N (an i m -  

plementation def ined maximum). A shared v a r i a b l e  is dec lared  wi th  the  

a t t r i b u t e  LOCK(k) t o  place i t  i n  lockgroup k. Locked v a r i a b l e s  may only be 

re ferenced  wi th in  UPDATE blocks ( c r i t i c a l  r eg ions ) .  Locked v a r i a b l e s  may 

be passed as  parameters t o  subprograms. The corresponding formal parameter 

may be declared LOCK(k), i n d i c a t i n g  t h e  a c t u a l  parameter i s  always from the  

k t h  lockgroup, o r  LOCK(*), i n d i c a t i n g  t h a t  t he  a c t u a l  parameter is  from a 

d i f f e r e n t  lockgroup on d i f f e r e n t  ca l l s .  

The problem. On e n t r y  t o  an UPDATE block which r e fe rences  a formal  

parameter declared as LOCK(*), i t  i s  not  c l e a r  whether a l l  lockgroups are 

locked o r  only t h a t  lockgroup t o  which t h e  a c t u a l  parameter belongs on each 

c a l l .  The 360 implementation was found t o  lock a l l  lockgroups (i.e.,  ac- 

cess t o  any shared d a t a  w a s  c losed  of f  u n t i l  t h e  UPDATE block w a s  

complete). 

Dispos i t ion  of the  problem. The s p e c i f i c a t i o n  was c l a r i f i e d  t o  ind i -  

c a t e  t h a t  a l l  lockgroups are locked. 

Problem 4 :  Real-time task ing .  HAL con ta ins  a v a r i e t y  of s ta tements  

f o r  def in ing  and c o n t r o l l i n g  t a s k s  i n  real-time a p p l i c a t i o n s .  Tasks may be 

scheduled f o r  execut ion i n  a v a r i e t y  of ways, i nc lud ing  c y c l i c  r e p e t i t i o n  

a t  a set t i m e  i n t e r v a l ,  e.g., us ing "SCHEDULE P REPEAT U N T I L  E" t o  i n d i c a t e  

immediate r e p e t i t i o n  of P each t i m e  a cyc le  completes,  cont inuing  u n t i l  

some "event expression" E becomes t r u e .  Tasks may be given p r i o r i t i e s .  

Tasks may be terminated e i t h e r  by a TERMINATE s ta tement  (immediate termina- 

t i o n )  or  a CANCEL s ta tement  ( t e rmina te  a t  end of c u r r e n t  cyc le ) .  
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The problem. Although the  s p e c i f i c a t i o n  of t h i s  r a t h e r  d i f f i c u l t  area 

of the language was gene ra l ly  " t igh t " ,  t h e  s p e c i f i c a t i o n  was s i l e n t  o r  am- 

biguous on s e v e r a l  points :  

a. No meaning w a s  given f o r  a p r i o r i t y  s p e c i f i c a t i o n  on a t a sk .  

b. When a t a s k  was terminated by CANCEL, i t s  dependent t a s k s  were a l s o  

t o  be canceled. But were the  dependents canceled immediately or  a t  t h e  end 

of t he  c u r r e n t  cyc le  ( t h e  s p e c i f i c a t i o n  s a i d  immediately, but t h e  360 i m -  

plementation canceled a t  t h e  end of the cyc le ) .  Both the  t a s k  and i ts  de- 

pendents could schedule o t h e r  tasks a f t e r  t h e  CANCEL s ta tement  w a s  

executed;  were t h e s e  o t h e r  t a s k s  also canceled? In gene ra l ,  t he  " t r i c k l e  

down" semantics  of CANCEL w a s  not  well  def ined.  

c. If a t a s k  were terminated by a TERMINATE command, "ces sa t ion  of ex- 

ecu t ion"  of i t s  dependents w a s  a l s o  t o  t a k e  place. Was t h i s  t he  same t h i n g  

as terminat ion? 

D i s p o s i t i o n  of t he  problem. The semantics  f o r  CANCEL was changed t o  

d e l e t e  t h e  r e f e r e n c e  t o  cance la t ion  of dependents.  TERMINATE w a s  c l a r i f i e d  

t o  s p e c i f y  TERMINATE of dependents. The semantics of t a s k  p r i o r i t i e s  was 

s p e c i f i e d  as e n t i r e l y  implementation dependent. 

Problem 5: Lifet imes of EVENT v a r i a b l e s .  A t a s k  or  subprogram may 

d e c l a r e  a v a r i a b l e  of type EVENT. Such a v a r i a b l e  i s  s i m i l a r  t o  a boolean 

v a r i a b l e ,  but i t  may be used i n  "event expressions"  f o r  t a s k  schedul ing,  

e.g., i n  t h e  s ta tement  "SCHEDULE P ON E" (where E is an EVENT v a r i a b l e ) .  

In  ano the r  part of t he  s p e c i f i c a t i o n ,  a v a r i a b l e  may be declared t o  be i n  

e i t h e r  of t h e  i n i t i a l i z a t i o n  classes STATIC (va lue  preserved between ca l l s )  

o r  AUTOMATIC (va lue  not preserved between cal ls) ,  and any v a r i a b l e  may be 

a s s igned  an i n i t i a l  value.  STATIC i n i t i a l i z a t i o n  occurs  only once a t  t h e  
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f i r s t  execution of the d e c l a r i n g  r o u t i n e ;  AUTOMATIC i n i t i a l i z a t i o n  occurs  

on each entry.  

The problem. An EVENT v a r i a b l e  used i n  a real-time schedul ing s ta te-  

ment may "outlive" the  r o u t i n e  d e c l a r i n g  i t ,  because the d e c l a r i n g  r o u t i n e  

may complete i t s  execut ion be fo re  t h e  event  i s  s i g n a l e d  (changed t o  

t r u e ) .  If so, then the d e c l a r i n g  r o u t i n e  d i e s ,  but  t he  event  v a r i a b l e  con- 

t i n u e s  t o  be evaluated by t h e  "real-time execut ive" u n t i l  t h e  r e l a t e d  

schedul ing i s  complete. In the  meantime, t he  d e c l a r i n g  r o u t i n e  might have 

been executed a second t i m e .  An AUTOMATIC EVENT v a r i a b l e  would not  neces- 

s a r i l y  have i t s  v lue  preserved a f t e r  e x i t  from t h e  d e c l a r i n g  r o u t i n e  and i t  

would be r e i n i t i a l i z e d  on t h e  next cal l .  AUTOMATIC EVENT v a r i a b l e s  turned 

out  t o  be prohibi ted by t h e  360 compiler,  a l though allowed by t h e  language 

s p e c i f i c a t i o n .  A r e l a t e d  problem w a s  t h a t  event expressions could inc lude  

s u b s c r i p t  expressions naming o t h e r  v a r i a b l e s .  The time of e v a l u a t i o n  of 

t h e s e  subsc r ip t  expressions w a s  not de f ined ,  and might a l s o  l ead  t o  these  

v a r i a b l e s  o u t l i v i n g  t h e i r  d e f i n i n g  subprogram. 

Di spos i t i on  of the problem. The s p e c i f i c a t i o n  w a s  changed t o  p r o h i b i t  

AUTOMATIC EVENT v a r i a b l e s .  D i spos i t i on  of t he  o t h e r  problem is unknown. 

Problem 6: Exception handling. HAL con ta ins  f a c i l i t i e s  f o r  d e f i n i n g  

excep t ion  handlers  ( "e r ro r  environments") and f o r  r a i s i n g  and propogating 

excep t ions .  The a c t i o n  i n  an except ion handler  may be t o  execute  a state- 

ment, t o  IGNORE t he  except ion and resume execut ion,  o r  t o  SYSTEM the  excep- 

t i o n  (invoke a system-def ined a c t i o n )  . Exception hand le r s  may handle ind i -  

v i d u a l  except ions,  groups of excep t ions ,  o r  ALL excep t ions ,  w i th  a prece- 

dence i n  that order.  Thus when an  except ion i s  r a i s e d ,  i t  i s  handled by an 
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i n d i v i d u a l  handler  i f  one e x i s t s ,  otherwise by a handler  f o r  i ts  group, and 

f i n a l l y  by a gene ra l  ALL handler  i f  one e x i s t s .  

The problem. The HAL s p e c i f i c a t i o n  implied t h a t  except ion propogation 

followed s t a t i c  scope rules (block n e s t i n g ) ,  but  t h e  360 implementation 

turned out t o  use dynamic scope rules ( c a l l i n g  cha in ) .  Which w a s  

c o r r e c t ?  The p r e c i s e  meaning of the IGNORE o p t i o n  w a s  no t  clear i n  t h e  

case of an except ion propogated down s e v e r a l  levels of subprogram 

nes t ing .  Also t h e  precedence r u l e s  f o r  propogated excep t ions  were no t  

c l e a r l y  def ined.  

D i s p o s i t i o n  of t he  problem. The s p e c i f i c a t i o n  was modified t o  s p e c i f y  

dynamic scope r u l e s  f o r  except ion propogation. The o t h e r  p o i n t s  were 

Problem 7: Parameter s p e c i f i c a t i o n s .  A c h a r a c t e r  s t r i n g  formal para- 

meter could have a l e n g t h  s p e c i f i c a t i o n  o r  "*" t o  i n d i c a t e  an a r b i t r a r y  

l eng th .  Other parameter types could have some d i f f e r e n c e s  between a c t u a l  

and formal parameter s p e c i f i c a t i o n ,  for  example, a formal might be d e c l a r e d  

BOOLEAN and an a c t u a l  B I T ( 1 )  (def ined as equ iva len t  i n  most s i t u a t i o n s ) .  

The problem. The r u l e s  of correspondence between the  a t t r i b u t e s  of 

a c t u a l  and formal parameters were not complete. For example, could t h e  

a c t u a l  be dec la red  BOOLEAN while the formal w a s  dec l a red  BIT( l ) ?  Could a 

c h a r a c t e r  s t r i n g  formal have a length s p e c i f i c a t i o n  o t h e r  than * ( ind ica -  

t i n g  an a r b i t r a r y  l e n g t h ) ?  

D i s p o s i t i o n  of the problem. The language s p e c i f i c a t i o n  w a s  changed t o  

p r o h i b i t  any l e n g t h  but "*" f o r  a character s t r i n g  formal parameter. D i s -  

p o s i t i o n  of t he  o the r  problems is  unknown. 
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Problem 8: Subsc r ip t s  on c h a r a c t e r  s t r i n g  v a r i a b l e s .  A s u b s c r i p t  "#" 

on a v a r i a b l e  i n d i c a t e s  t h e  "maximum index-value i n  t h e  r e l e v a n t  

dimension". This a p p l i e s  t o  b i t  and c h a r a c t e r  s t r i n g  v a r i a b l e s  as w e l l  as 

t o  v e c t o r s ,  ma t r i ces ,  and a r r a y s .  

The problem. A c h a r a c t e r  s t r i n g  has both a maximum l e n g t h  and a cur- 

r e n t  length.  Which l eng th  w a s  meant by "#"? If t h e  c u r r e n t  l eng th  i s  

meant and the l eng th  is zero,  what i s  t h e  r e s u l t ?  I f  t h e  maximum l e n g t h  is 

meant, and the  c u r r e n t  l e n g t h  i s  less than t h e  maximum, what i s  the  r e s u l t ?  

D i spos i t i on  of t he  problem. "#" w a s  def ined t o  r e f e r  t o  the  c u r r e n t  

l eng th  of a s t r i n g .  D i spos i t i on  of t he  o t h e r  problem i s  unknown. 

Problem 9: 1/0 and f i l e  pos i t i on ing .  A READ statement  may con ta in  

expressions involving t h e  v a r i a b l e s  being read,  e i t h e r  i n  s u b s c r i p t  expres- 

s i o n s  f o r  o t h e r  v a r i a b l e s  or  i n  arguments f o r  c o n t r o l  func t ions  such as 

TAB, SKIP, and LINE t h a t  c o n t r o l  f i l e  pos i t i on ing .  

The problem. The t i m e  of eva lua t ion  of expres s ions  i n  READ l i s t s  is  

no t  def ined,  whether be fo re  execut ion of t h e  s t a t emen t  begins o r  when 

reached during execution. For example, t h e  meaning of READ ( u )  I, AI can- 

not  be determined. The f i l e  p o s i t i o n i n g  a f t e r  a read s t e p  w a s  a l s o  no t  

s p e c i f i e d  c l e a r l y ,  so t h e  e f f e c t  of t h e  c o n t r o l  f u n c t i o n s  such as TbrB and 

SKIP could not  be determined p r e c i s e l y .  

D i spos i t i on  of t he  problem. Evaluat ion of expres s ions  i n  READ state- 

ments w a s  def ined t o  occur when the expres s ion  w a s  reached during execu t ion  

of the statement.  D i spos i t i on  of t he  o t h e r  problems i s  unknown. 

It should be apparent  from t h i s  l i s t  of problems t h a t  most were caused 

simply by t h e  informal s t y l e  of semantic d e f i n i t i o n  used. S imi l a r  ambi- 

g u i t i e s  and i n c o n s i s t e n c i e s  have plagued almost every programming language 
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definition (PASCAL, FORTRAN, ALGOL 60, ADA, etc.) that has used this infor- 

mal style of semantic definition. Considering the relatively limited expo- 

sure of W / S  in the programming community, the definition of this complex 

language is fairly tight. Many of the problems we uncovered were remedied 

by adding some short clarification to the language specification. 

Implementation Design 

An important virtue of structuring a formal definition so that it is 

also an abstract design for an implementation lies in the potential use of 

the definition as an intermediate step in the detailed design of an imple- 

mentation. The major goal of our project was not to "debug" the HAL/S 

specification but rather to use the formal semantic definition to determine 

how effectively various language features could be implemented on par- 

ticular restricted hardware architectures. The goal was to identify a sub- 

set of the language that could be implemented with good run-time efficiency 

on a particular computer. The two machines chosen for the study were the 

IBM NSSC-11, a radiation hardened, slightly modified version of the IBM 

360, and the Intel 8080A microprocessor. 

An H-graph semantics definition is well-suited to this use because the 

level of abstraction in such a definition lies between the implementation 

independent specification found in the usual informal language definition 

(e.g., [ l ] )  and the detail of a particular implementation for a particular 

machine. The productions of the "state grammar" (the H-graph grammar de- 

fining the state of the run-time machine) define the various data and code 

structures necessary to support program execution and the information that 

each contains, but they do not specify any detailed storage layouts, link- 

ages, or other details that may be machine dependent. Similarly the defi- 
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n i t i o n s  of H-graph t ransforms s p e c i f y  what t he  run-time support  r o u t i n e s  o r  

i n - l i n e  code sequences produced by t h e  compiler must do t o  t h e  d a t a  s t r u c -  

t u r e s ,  but t h e  s p e c i f i c a t i o n  is  a l s o  independent of machine d e t a i l s .  

W e  were success fu l  i n  ana lyz ing  the  d e t a i l e d  implementation des ign  f o r  

t h e s e  two machines by the  r e l a t i v e l y  simple process  of ( 1 )  mapping each 

production i n  t h e  state grammar i n t o  a p a r t i c u l a r  s t o r a g e  r e p r e s e n t a t i o n  on 

t h e  t a r g e t  machine f o r  the  def ined d a t a  o r  code s t r u c t u r e  and ( 2 )  mapping 

each transform d e f i n i t i o n  i n t o  a p a r t i c u l a r  code sequence t h a t  manipulated 

t h e  defined da ta  r ep resen ta t ion  appropr i a t e ly .  However, both s t u d i e s  were 

terminated without  any a c t u a l  implementation completed. Subsequently,  

Feyock [131 used e s s e n t i a l l y  the same methods t o  produce an implementation 

of t h e  HAL/S real-time s t r u c t u r e  coded i n  PASCAL. In h i s  work, product ions 

i n  t h e  s t a t e  grammar were mapped i n t o  PASCAL type d e f i n i t i o n s  and H-graph 

transforms were represented  as PASCAL procedures.  

The study of implementation of t he  NSSC-I1 [ l l ]  and t h e  I n t e l  8080A 

[ 121 d e a l t  p r imar i ly  with the  l a r g e r  s t r u c t u r e s  of the language, e s p e c i a l l y  

t h e  real-time f e a t u r e s ,  s to rage  management, subprogram a c t i v a t i o n s ,  excep- 

t i o n  handl ing,  and the  run-time s t r u c t u r e s  needed t o  support  t hese  language 

f e a t u r e s .  The lower-level parts of t he  language were less i n t e r e s t i n g  be- 

cause they were somewhat more convent iona l  and a l s o  i n  most cases our se- 

mantic  model omit ted some low-level d e t a i l s  needed f o r  a c a r e f u l  

a n a l y s i s .  The model of t he  implementation of t he  l a r g e r  s t r u c t u r e s  of t h e  

language was found t o  be u s e f u l  i n  s e v e r a l  ways: 

1 .  It brought t oge the r  i n t o  a coherent  whole a l l  t h e  underlying run- 

t i m e  support s t r u c t u r e s  needed t o  implement a d i v e r s i t y  of language fea-  

t u r e s ,  each descr ibed  s e p a r a t e l y  i n  t h e  language s p e c i f i c a t i o n .  For an  

implementor, cons t ruc t ion  of such a coherent  implementation model i s  neces- 
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s a r i l y  the  f i r s t  s t e p  i n  implementation design and o f t e n  is extremely d i f -  

f i c u l i  without  a "b luepr in t"  such as i s  provided by t h e  H-graph semantic  

d e f i n i t i o n .  

2. It allowed a s t ra ight forward  l ayou t  f o r  l o c a l  s to rage  areas f o r  

each t a s k ,  program and subprogram t o  be determined. A few product ions i n  

t h e  H-graph grammar def ined,  f o r  each type of program, e x a c t l y  which items 

of in format ion  were needed i n  the  loca l  s to rage  area f o r  t h a t  type of pro- 

gram u n i t .  From t h i s  it was simple t o  determine the  s to rage  layout  f o r  

a c t i v a t i o n  records ,  and t o  " f ine  tune" t h e s e  l ayou t s  as the d e t a i l e d  des ign  

of o the r  parts of the  implementation was completed. 

3. It allowed a n a l y s i s  of t he  s t o r a g e  management s t r u c t u r e  r equ i r ed  

i n  t h e  implementation. From study of t he  a b s t r a c t  implementation model, 

s e v e r a l  s u b t l e  f a c t s  about the  s torage  management s t r u c t u r e  f o r  HAL/S be- 

came apparent .  For real-time l i f e - c r i t i c a l  systems, dynamic s to rage  man- 

agement i s  p a r t i c u l a r l y  troublesome because of t he  p o s s i b i l i t y  of a system 

f a i l u r e  caused by running out of s torage  (e.g., an overflow of a dynami- 

c a l l y  a l l o c a t e d  queue is repor ted  t o  have forced  a manual takeover  and lan-  

d ing  of one of the  early lunar  f l i g h t s ) .  By ana lyz ing  the  HALIS model, a 

few simple r e s t r i c t i o n s  were found tha t  enabled a s ta t ic  s to rage  management 

s t r u c t u r e  f o r  a l l  t he  real-t ime queues t o  be used. A t  t h e  same t i m e ,  a po- 

t e n t i a l l y  s e r i o u s  s to rage  management problem f o r  r e e n t r a n t  procedures w a s  

i d e n t i f i e d  t h a t  e i t h e r  required a r e s t r i c t i o n  i n  t h e  language, a worst  case 

s t a t i c  a l l o c a t i o n  s t r a t e g y  ( p o t e n t i a l l y  expensive i n  s t o r a g e ) ,  o r  dynamic 

a l l o c a t i o n  during execut ion.  

A s  an a b s t r a c t  implementation model, an H-graph semantic d e f i n i t i o n  

has  some s imi la r i t i es  t o  d e f i n i t i o n  of a machine independent i n t e rmed ia t e  

code f o r  t he  language, such as the  DIANA in te rmedia te  r ep resen ta t ion  pro- 
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posed for ADA [151. Our original intent was to use the HALMAT intermediate 

code (in an abstract form) used by the HAL/S implementation as the basis 

for our code representations in the formal model. However, we found HALMAT 

to be only marginally useful for that purpose, primarily because the HALMAT 

operations reflected rather strongly the syntactic divisions of HAL/S pro- 

grams and only rather weakly modeled the run-time distinctions that were 

the basis for our choice of transforms in the run-time model. We suspect 

that this may be true of intermediate codes in general. The DIANA inter- 

mediate code for ADA is a form of abstract syntax tree for ADA programs, 

and thus also reflects more the syntactic structure of ADA than the run- 

time organization needed in an ADA implementation. 

5. Conclusion 

Experience with the H-graph semantic definition of HAL/S indicates 

that this style of language definition realizes two major advantages: 

a. In constructing a formal semantic definition, vague, ambiguous and 

inconsistent parts of the language specification are identified and given 

precise meaning; and 

b. By providing an abstract implementation model, the definition sim- 

plifies implementation design and supports precise analysis of large 

scale implementation design issues at an early stage. 

Advantage (a) would apply to any careful, complete analysis of a lan- 

guage definition, whether or not a formal semantic definition was the 

goal. However, our experience shows that simply having several complete 

implementations of the language in use is not necessarily sufficient to 

provide this result. 
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Advantage (b) is not commonly realized through formal semantic defini- 

tions, because other definition methods such as denotational and axiomatic 

semantics have usually avoided direct implementation models. Our experi- 

ence indicates that development of an abstract implementation model is val- 

uable for a variety of purposes during implementation design. Recent ex- 

perience with the use of an H-graph semantic definition in implementation 

of another language strongly supports this conclusion. 
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